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ABSTRACT 

Filoviruses are the etiological agents of two human illnesses: Ebola virus disease and Marburg 

virus disease. Until 2013, medical countermeasure development against these afflictions was 

limited to only a few research institutes worldwide as both infections were considered exotic due 

to very low case numbers. Together with the high case-fatality rate of both diseases, evaluation 

of any candidate countermeasure in properly controlled clinical trials seemed impossible. 

However, in 2013, Ebola virus was identified as the etiological agent of a large disease outbreak 

in Western Africa including almost 30,000 infections and more than 11,000 deaths, including 

case exportations to Europe and North America. These large case numbers resulted in medical 

countermeasure development against Ebola virus disease becoming a global public-health 

priority. This review summarizes the status quo of candidate vaccines against Ebola virus 

disease, with a focus on those that are currently under evaluation in clinical trials. 

INTRODUCTION 

Filoviruses (the members of the mononegaviral family Filoviridae) cause two diseases 

recognized by the World Health Organization (WHO): Ebola virus disease (EVD) can be caused 

by Bundibugyo virus (BDBV), Ebola virus (EBOV), Sudan virus (SUDV), and Taï Forest virus 
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(TAFV), whereas Marburg virus disease (MVD) can be caused by Marburg virus (MVD) and 

Ravn virus (RAVV) [1]. Until 2013, filovirus infections were considered exotic infections that 

had little or no impact on overall public health [2]. By the end of 2013, the total of all known 

human filovirus infections since 1967 reached 2,937, including 2,018 deaths (EVD: 2,460/1,633; 

MVD: 477/385). EBOV-caused EVD amounted to 1,469 cases and 1,150 deaths [1]. However, at 

the end of 2013, an EBOV-caused EVD outbreak came to the forefront of primarily three 

Western African countries (Guinea, Liberia, and Sierra Leone), which, by its sheer magnitude, 

demonstrated that EBOV has the potential to cause large lethal epidemics that can threaten entire 

economies: by March 2016, this outbreak encompassed a staggering 28,639 human infections 

including 11,316 deaths (case-fatality rate = 39.51%) [3]. Vaccines were suddenly in high 

demand to protect populations from initial infection with EBOV, from acquiring EBOV from 

infected friends or family members, and to protect health-care providers and other first 

responders involved in EVD outbreak control. Yet, no such vaccines existed. The global filovirus 

research community reacted relatively swiftly, however, and by the time of writing, numerous 

candidate vaccines are under evaluation in clinical trials at various phases. This review 

summarizes which candidate vaccine platforms are currently in the clinic. 

EBOLA VIRUS CANDIDATE VACCINE RESEARCH AND DEVELOPMENT 

Development of vaccines for protection against infection with rare or exotic pathogens typically 

falls into the spheres of public health and/or biodefense. Such development does not, however, 

often pique the interest from the pharmaceutical industry. With little financial incentive to justify 

a private company’s investment into vaccines that only few people would actually need, 

candidate vaccines for rare diseases often languish at the research bench stage, regardless of the 

strength of the preclinical studies assessing them. The 2013–2016 EVD outbreak in Western 
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Africa due to EBOV infection, however, was a shock to the system. EBOV candidate vaccines 

came roaring to the forefront in the popular press during this outbreak, demonstrating that a 

handful of research institutes had indeed been fully engaged in Ebola virus and other filovirus 

vaccine research for many years despite the then-low profile of the target agents. Prior to 2014, a 

total of four clinical trials that tested potential filovirus vaccines had been run in the US, all of 

them conducted by the National Institute of Allergy and Infectious Diseases (NIAID) of the US 

National Institutes of Health (NIH). Three of these candidate vaccines were based on a NIAID 

DNA-vaccine platform. The fourth, the NIAID Vaccine Research Center (VRC) rAd5-vectored 

vaccine VRC-EBOADV018-00-VP, would prove to be the precursor to one of the most 

promising anti-EBOV vaccines currently under development. Between 2014 and the time of 

writing, at least forty clinical trials are underway with more than eight different filovirus 

candidate vaccines. All of these express the filovirus glycoprotein (GP1,2) as the primary 

immunogen, but utilize different platforms for expression [4]. This review will highlight the 

candidate vaccines currently in the clinic, with a brief discussion of promising preclinical 

candidates. 

REPLICATION-COMPETENT, VECTORED VACCINES 

Vesiculovirus Vectors 

rVSV-ZEBOV 

Vesicular stomatitis Indiana virus (VSIV) is a single-stranded, negative-sense RNA 

mononegavirus (Mononegavirales: Rhabdoviridae: Vesiculovirus) that typically infects livestock 

and rarely infects humans [5-7]. The VSIV genome has five genes that are expressed in a 

sequential and polar manner [8]. Using a reverse genetics system for VSIV in existence since 
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1995, a researcher can easily manipulate the virus and develop vaccine vectors [9]. Recombinant 

VSIV-based vaccines induce strong cellular and humoral immunity, are easily propagated in 

vitro, and undergo little, if any, genetic recombination or genetic reassortment [10]. Significant 

research efforts have aimed to develop methods of VSIV attenuation, at least partially for the 

purpose of using the resulting viruses as the basis for vaccine vectors [11]. 

The only EVD candidate vaccine for which human efficacy data exist, the “rVSV-ZEBOV” 

vaccine, is a replication competent VSIV-vectored vaccine [12-14]. This vaccine was developed 

by the Public Health Agency of Canada and licensed to NewLink Genetics and then Merck. The 

rVSV-ZEBOV vaccine has been referred to as VSVG-ZEBOV-GP, rVSV-ZEBOV, VSV-

ZEBOV, rVSVdeltaG-ZEBOV-GP, BPSC1001, and, most recently, V920 [“VSV” is a colloquial 

abbreviation for VSIV and “ZEBOV” is an outdated abbreviation for EBOV]. The distinguishing 

feature of rVSV-ZEBOV is that EBOV GP1,2 replaces the VSIV glycoprotein (G), resulting in 

exclusive expression of EBOV GP1,2 on virions produced from the recombinant VSIV backbone 

[12]. This glycoprotein exchange is anticipated to enhance the safety of the vaccine, as VSIV G 

is associated with neurovirulence and disease in infected animals [15,16]. 

According to the registry of clinical trials maintained by NIH (https://clinicaltrials.gov), rVSV-

ZEBOV is or has been used in ten clinical trials, including trials in Liberia, Kenya, and Sierra 

Leone (accession numbers NCT02344407, NCT02296983, NCT02378753, respectively). 

Current efforts are focused on assessing lot consistency (NCT02503202) and examining the 

impact of escalating the vaccine dose (highest dose, 1× 108 pfu) on immunogenicity. The most 

impactful of these trials, however, have been those conducted in Western Africa in collaboration 

between NIAID and the WHO, specifically the Partnership for Research on Ebola Vaccines in 

Liberia (PREVAIL) trial and the Sierra Leone Trial to Introduce a Vaccine against Ebola 
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(STRIVE). In addition, the Guinea Ring Vaccination Trial, conducted under the auspices of 

WHO, was extended to Sierra Leone in August 2015 (http://www.afro.who.int/en/sierra-

leone/press-materials/item/7962-guinea-ring-vaccination-trial-extended-to-sierra-leone-to-

vaccinate-contacts-of-new-ebola-case.html) (Pan African Clinical Trials Registry, 

PACTR201503001057193). 

The PREVAIL trial is an ongoing study to vaccinate individuals in Liberia with either rVSV-

ZEBOV or the NIAID/Merck ChAd3-EBOZ vaccine (NCT02344407) [17] [EBOZ is another 

outdated abbreviation for EBOV]. PREVAIL is largely a safety study, which is performed with 

the intention to upgrade it to an efficacy study were an EVD outbreak to reemerge. STRIVE is 

also ongoing, but involves the development of rVSV-ZEBOV for frontline workers, including 

healthcare workers, ambulatory workers, and laboratory workers who may come in contact with 

EVD cases professionally (NCT02378753). The Guinea Ring Trial is the first EVD vaccine 

efficacy study. Contacts of cases with confirmed EBOV infection were enrolled in the trial and 

received rVSV-ZEBOV (2 × 107 pfu) either immediately or 21 days later. rVSV-ZEBOV was 

administered in clusters, such that all contacts of each index case received either the immediate 

or delayed vaccination. Approximately 40 clusters of individuals were enrolled in each arm. 

None of the individuals receiving the vaccine immediately developed EVD. In contrast, 16 cases 

of EBOV infection occurred in seven different clusters in the delayed vaccination group, 

suggesting that the vaccine was efficacious if given early in the disease course [18]. 

While the efficacy associated with rVSV-ZEBOV is highly encouraging, the vaccine has been 

marred by safety concerns. In the Guinea Ring Study, 43 serious adverse events were reported 

and are still under investigation [18]. Additionally, adverse events raised concerns about the 

safety profile of the vaccine used in European clinical trials [19]. In contrast, safety studies in 
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immunocompromised nonhuman primates had suggested that the vaccine would be safe in 

special populations [20]. In other multiple clinical studies in the US, Africa, and Europe, 

significant adverse events with rVSV-ZEBOV have not been observed [21,22]. As a direct 

relationship between vaccine dose and both immunogenicity (as evaluated by antibody titers) and 

safety (as evaluated by adverse events) is apparent, an acceptable balance between 

immunogenicity and safety should be determined based on collected clinical data [19]. Antibody 

titer data from protected individuals in the Guinea Ring Trial may aid in determining optimal 

antibody titers desired for protection. 

In the pipeline 

In contrast to rVSV-ZEBOV, VesiculoVax (Profectus Biosciences) is based on a recombinant 

VSIV that expresses both VSIV G and EBOV GP1,2. However, a rearrangement of the gene order 

in the recombinant backbone results in preferential expression of EBOV GP1,2 and minimal 

expression of the VSIV G, which is also truncated [23,24]. Potential benefits of this candidate 

vaccine are that the rearrangement of genes also places the VSIV nucleocapsid (N) gene in the 

fourth position (rather than the wild-type first position), which attenuates the virus [11]. 

Recently, researchers from Profectus Biosciences demonstrated that VesiculoVax is efficacious 

in nonhuman primates against infection with EBOV Makona-C07, which is an isolate obtained 

during the 2013–2016 Western Africa EVD outbreak [23]. VesiculoVax is produced with GP1,2 

from the EBOV Yambuku-Mayinga isolate obtained in 1976, as are many of the candidate 

vaccines discussed here. Consequently, the VesiculoVax nonhuman-primate study demonstrates 

the ability of the vaccine to cross-protect against different EBOV variants to some extent. 

Researchers from Profectus Biosciences suggest that VesiculoVax may be safer than other VSIV 

platforms due to the incorporated attenuation, and a head-to-head comparison between rVSV-
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ZEBOV and VesiculoVax candidates may therefore be of interest. The VesiculoVax platform 

has successfully entered a clinical trial with an antigen insert (human immunodeficiency virus-1 

[HIV-1]) other than EBOV, and therefore theoretically should be poised to transition to the clinic 

if funding were provided (NCT01438606). 

Respirovirus Vectors 

Respiroviruses (Mononegavirales: Paramyxoviridae: Respirovirus) are single-stranded, 

negative-sense, RNA viruses that are actively being explored as potential vaccine vectors. Early 

studies examining the utility of recombinant human parainfluenza virus 3 (HPIV-3) as a vaccine 

vector demonstrated that multiple glycoproteins could be inserted into the viral backbone. The 

utility of insertion was impacted by the number and position of insertions and by whether the 

resulting protein was incorporated into packaged virions [25]. Potential benefits of HPIV-3 as a 

vector include its genomic stability, ease of production, and the efficiency with which foreign 

inserts are expressed [26,27]. However, as for adenovirus platforms, pre-existing immunity to 

HPIV-3 may reduce vaccine efficacy. Preclinical efforts are underway to circumvent the issues 

of pre-existing immunity [28,29]. 

HPIV3-EBOVZ GP 

Results from preclinical studies in HPIV-3-immune guinea pigs with EBOV GP1,2-expressing 

HPIV-3 have suggested that while pre-existing immunity to the vector suppressed vector 

replication, the animals nonetheless mounted a robust immune response to the EBOV GP1,2 [30]. 

In contrast, in nonhuman primates, low levels of vector replication were detectable despite pre-

existing immunity to HPIV-3 [31]. While immunogenicity was initially reduced in vector-

immune monkeys, the IgG, IgA, and neutralizing antibody titers to EBOV GP1,2 were essentially 
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equivalent to those of vector-naïve monkeys after two vaccinations [31]. Results from a 

subsequent nonhuman-primate study demonstrated that aerosol or intranasal/intratracheal 

administration of HPIV-3/EBOVZ GP also elicited robust immune responses and provided 

protection from disease after intramuscular exposure to EBOV [32]. 

NIAID is sponsoring clinical trials with an HPIV-3-based vaccine, “HPIV3-EbovZ GP” 

(NCT02564575). Perhaps the most unique and intriguing characteristic of this candidate vaccine 

is that the vaccine is administered intranasally; all other vaccines currently in clinical trials are 

administered intramuscularly. The potential benefits of intranasal administration are the ease of 

administration as well as the effective induction of mucosal immunity. Mucosal immunity may 

be of particular importance in filovirus disease outbreaks during which the vast majority of 

infections are thought to occur through mucosal exposure to contaminated bodily fluids. The 

current Phase I study is examining two doses of HPIV3-EbovZ GP administered twice at a 4–8 

week-interval. Viremia, the duration of HPIV-3 shedding, and safety will be assessed in the 

volunteers. 

REPLICATION-INCOMPETENT, VECTORED VACCINES 

Adenovirus vectors 

Adenoviruses (Adenoviridae) have been developed as vaccine vectors for multiple antigens, but 

pre-existing immunity to the selected adenovirus may impact vaccine efficacy [33-35]. Vaccines 

based on adenovirus backbones may be ineffective if a patient’s pre-existing immunity to the 

adenovirus stifles the immune response to the intended target antigen [33]. Moreover, pre-

existing immunity to the adenovirus 5 (Ad5; species Human mastadenovirus C) backbone 

actually seemed to have a negative effect on prognosis in an HIV-1/AIDS vaccine trial [36,37]. 
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Nonetheless, one of the first EVD vaccines to enter clinical trials was, in fact, an adenovirus-

based vaccine targeting EBOV (VRC-EBOADV018-00-VP) [38,39]. Subsequent research has 

examined the properties of various adenovirus vectors on vaccine immunogenicity and efficacy, 

indicating that concerns about adenovirus-based vaccines can be mitigated by careful selection of 

the backbone virus [40,41]. Two of the current, advanced EVD candidate vaccines that are based 

on adenoviruses circumvent the issue of pre-existing immunity either by enlisting a chimpanzee 

adenovirus 3 (ChAd3; species Human mastadenovirus C) vector or a vetted human vector 

against which the population at large has limited pre-existing immunity. Additionally, pre-

existing immunity to adenoviruses may be abrogated by administering the vaccine orally, a route 

that has been pursued by some vaccine developers [42-45]. 

Three different adenovirus-based vaccines are currently in the clinic. The first vaccine is based 

on ChAd3. This vaccine was developed by the NIAID VRC and is in multiple Phase II clinical 

trials (NCT02485301, NCT02548078, NCT02344407, NCT02289027). The vaccine is almost 

universally administered as a heterologous prime-boost vaccination regimen with a modified 

vaccinia virus Ankara (MVA)-based vaccine. The second candidate is a vaccine based on 

adenovirus 26 (Ad26, species Human mastadenovirus D), developed by Crucell Holland B.V., 

one of the Janssen Pharmaceutical Companies of Johnson and Johnson. Selection of the Ad26 

backbone was likely based on studies comparing the immunogenicity of Ad35 (species Human 

mastadenovirus B), Ad26, and Ad5 backbones in nonhuman primates [40]. Ad35 was studied 

because of very low seroprevalence of antibodies against Ad35 in the human population whereas 

Ad26 was studied because it elicits low levels of neutralizing antibodies. Induction of high levels 

of neutralizing antibodies was thought to be the major drawback for the Ad5-based vaccine 

platform [40,46,47]. The third candidate vaccine is based on Ad5 and is sponsored by the Jiāngsū 
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Provincial Centers for Disease Control and Prevention in China (NCT02326194, NCT02575456, 

NCT02533791). All of these adenovirus backbones were tailored to become replication-

incompetent by deleting the E1 regions [48,49]. EBOV GP1,2 is encoded by the adenovirus 

backbone and is therefore expressed upon entry of a target cell by the encoded adenovirion; 

GP1,2 is not located on the adenovirus particle surface as in the case of VSIV-based vaccines[33]. 

ChAd3.EBOZ 

The ChAd3 backbone is an effective antigen delivery system and has been tested as a candidate 

vaccine against multiple pathogens [50,51]. Two separate ChAd3-based filovirus vaccines were 

developed by the NIAID VRC. VRC-EBOADC069-00-VP (ChAd3-EBO) expresses both the 

EBOV and the related Sudan virus (SUDV) GP1,2s in two separate vectors, mixed at a 1:1 ratio. 

VRC-EBOADC076-00-VP (ChAd3-EBOZ), in contrast, only includes EBOV GP1,2. Both 

candidate vaccines have been evaluated in Phase I studies. ChAd3-EBOZ has moved on to Phase 

II trials and the Phase III PREVAIL trial, and the vaccine is licensed by GlaxoSmithKline (GSK) 

as GSK3390107A. 

ChAd3-EBOZ was among the first EVD candidate vaccines evaluated for duration of immunity 

in nonhuman primates. Investigators found that immunity waned in crab-eating macaques after a 

single vaccination and therefore included a booster vaccination with an MVA-vectored vaccine 

[52]. Potentially stemming from these data and the immunogenicity data collected during an 

early Phase I trial [53], several ongoing clinical trials are utilizing a heterologous prime-boost 

with ChAd3-EBOZ and MVA-based vaccines. An MVA-filovirus vaccine produced by Bavarian 

Nordic (MVA-BN-Filo) has been included in all heterologous vaccination studies initiated in 
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2014 or earlier. Starting in 2015, however, there has been a switch to using an MVA vaccine 

developed by the NIAID VRC, VRC-EBOMVA079-00-VP (MVA-EbolaZ). 

Current clinical studies are evaluating the impact of timing of the boost vaccination, directly 

comparing administration of the boost (MVA-EBOZ) at days 14 and 28 and even as early as day 

7 (NCT02451891, NCT02240875). Moreover, different combinations of the two candidate 

vaccines (ChAd3-EBOZ, MVA-EbolaZ) and different dose levels are being evaluated to 

determine the most immunogenic combination. Investigators from a recently published Phase I 

study performed in Mali and the US suggested that ChAd3-EBOZ may be adequate for short-

term protection, as, for example, in a ring vaccination setting. However, a boost with an MVA 

vaccine would likely provide more durable protection [54]. Notably, the highest ChAd3-EBOZ 

dose tested, 1011 particle units (pu), was selected as the optimal dose level [54]. 

ChAd3-EBOZ is currently being evaluated in clinical trials in Africa, including in Mali, Senegal, 

Uganda, and Liberia (NCT02368119, NCT02485301, NCT02548078, NCT02267109, 

NCT02485912, NCT02354404, NCT02344407). Critically, ChAd3-EBOZ is the comparator 

treatment arm to rVSV-ZEBOV treatment arm in the PREVAIL study; data from the PREVAIL 

study that directly compare the immunogenicity of the two vaccines will be of great interest to 

the filovirus vaccine community. Historically, the adenovirus-based vaccine was thought to rely 

on a CD8 T-cell response for maximum efficacy, whereas a humoral response is thought to be 

the primary efficacy correlate of rVSV-ZEBOV [55-57]. 

As a non-replicating vaccine, ChAd3-EBOZ has not caused the concerning adverse events seen 

with rVSV-ZEBOV; however, ChAd3-EBOZ also appears to be inadequately immunogenic as a 

single vaccination [53,54,58]. In some EVD outbreak situations, administration of a booster 
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vaccination may not be feasible and will certainly be more costly than an efficacious single 

vaccination. Moreover, adenovirus based vaccines will not only require multiple vaccinations, 

but will require heterologous vaccinations. The immune response mounted to the adenovirus 

upon primary vaccination will reduce uptake of the adenovirus vaccine, reducing expression of 

the antigen, and therefore reducing or eliminating the immune response to the antigen [39,59]. 

Inadequate immunogenicity of a homologous adenovirus prime/boost regimen was indeed 

observed in nonhuman primate studies with ChAd3-EBOZ, and makes heterologous prime/boost 

vaccination a requirement for durable protection with this vaccine [52]. Overall, ChAd3-EBOZ 

appears to be an efficacious and safe candidate vaccine, but the logistical complications 

associated with administering a heterologous boost may reduce its impact in endemic regions. 

Ad26.ZEBOV 

Crucell Holland B.V. developed the Ad26-vectored EVD vaccine Ad26.ZEBOV based on 

extensive experience testing Ad26 and Ad35 vectors for malaria and filovirus disease 

vaccinations [60-63]. These early data, in combination with comparison of these virus vectors to 

Ad5, likely led Crucell Holland B.V. to select Ad26 for advanced vaccine development [40]. 

Possibly due to similar restrictions in immunogenicity and homologous boosting as those 

associated with the ChAd3-EBOZ, nearly all clinical studies conducted with Ad26.ZEBOV are 

being performed in the context of heterologous boosts with an MVA-vectored vaccine (MVA-

BN-Filo). Due to the recognition that either adenovirus candidate vaccine will require an MVA 

or comparable pairing, a clinical trial sponsored by the University of Oxford is underway to 

directly compare the ChAd3-EBOZ and Ad26.ZEBOV (NCT02495246). The study compares 

priming and boosting with either ChAd3-EBOZ or Ad26.ZEBOV, administered at either 28 or 
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56 days post-priming. Data from this study may suggest which candidate vaccine should be 

advanced or whether a heterotypic adenovirus vaccination regimen would be effective. 

In parallel with this comparative study, other Ad26.ZEBOV/MVA-BN-Filo clinical studies are 

focused on determining which candidate should be prime vs. boost, as well as on dose level and 

vaccination schedule. Multiple studies are underway or have been completed in Europe and 

Africa, including sites in Tanzania, Uganda, Kenya, and Sierra Leone. Additionally, 

Ad26.ZEBOV/MVA-BN-Filo vaccination is being studied in children, the elderly, and immune 

compromised individuals (NCT02564523, NCT02661464, NCT02509494). Ad26.ZEBOV is 

associated with a strong safety profile, with immunogenicity its most significant potential pitfall. 

As with many of these vaccine candidates, the low quantity of peer-reviewed publications on the 

products does not reflect the number of clinical trials completed or ongoing. Presumably, a 

significant amount of accumulated data will become available within the next year, but for now 

one must unfortunately rely on (potentially biased) company reports. For the 

Ad26.ZEBOV/MVA-BN-Filo vaccine combination, Janssen has created a project called 

EBOVAC (http://www.ebovac.org/), which apparently serves to collate and present data 

acquired from the numerous ongoing clinical trials of EVD candidate vaccines. 

Ad5-EBOV 

Despite concerns regarding Ad5-vectored vaccines, one Ad5-based EVD vaccine (Ad5-EBOV) 

is in the clinic both in China and in Sierra Leone. The vaccine is sponsored by the Jiāngsū 

Provincial Centers for Disease Control and Prevention and features EBOV GP1,2 encoded by the 

Ad5 backbone. One unique attribute of this vaccine is the use of a glycoprotein gene encoding 

GP1,2 of the EBOV Makona-C15 isolate rather than EBOV Yambuku-Mayinga, with the aim to 
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increase efficacy against the 2013–2016 Western Africa EBOV variant [64]. Investigators 

assessed pre-existing immunity of volunteers to the Ad5 backbone and found that a majority did 

indeed have antibodies against Ad5 [64]. The investigators also evaluated anti-EBOV GP1,2 titers 

after vaccination, comparing the titers of individuals with high vs. low pre-existing immunity to 

Ad5. Pre-existing immunity to Ad5 reduced anti-EBOV GP1,2 antibody titers significantly, but 

administration of a higher vaccine dose could potentially ameliorate this reduction [64]. 

Considering that Ad5 immunity is quite prevalent in the African population, the use of Ad5-

EBOV will only be advocated if immunogenicity concerns in the endemic population are 

overcome [65]. A Phase 2 study is now underway in Sierra Leone to compare the efficacy of two 

vaccine dosages (NCT02575456). 

In the pipeline 

The development of an orally or intranasally administered Ad5-vectored EVD vaccine has been 

pursued [66,67], and a recent study suggests that sublingual administration of an adenovirus-

based vaccine may provide durable protection at least in nonhuman primates [68]. Oral 

administration of a live adenovirus-vectored vaccine abrogates the relevance of pre-existing 

vector immunity, resulting in a robust immune response to the delivered antigen [42,43,69,70]. 

The US company Vaxart, which is currently evaluating an oral adenovirus-based influenza 

vaccine in a Phase I clinical trial (NCT02547792), has also developed an oral adenovirus-based 

EVD vaccine with plans to enter clinical trials. 

Poxvirus Vectors 

MVA is a replication-incompetent, attenuated vector developed from vaccinia virus (Poxviridae: 

Chordopoxvirinae: Orthopoxvirus) [71]. Antigens encoded by the vector are expressed in host 
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target cells upon infection [71]. MVA is itself stockpiled as a potential vaccine against smallpox 

(caused by the closely related variola virus), but it has also been used as a vector in the 

development of vaccines against many diseases, including malaria, hepatitis C, influenza, and, of 

course, filovirus diseases [50,72,73]. 

MVA-vectored vaccines have been used as heterologous boosts in multiple clinical trials, 

generally in combination with an adenovirus-based vaccine [74]. Bavarian Nordic’s MVA-BN-

Filo has been combined with both ChAd3-EBOZ and Ad26.ZEBOV. However, formation of an 

Ebola Vaccine Development Consortium last year, which includes Bavarian Nordic and Johnson 

& Johnson, may have solidified the Ad26.ZEBOV collaboration with MVA-BN-Filo 

(https://www.jnj.com/news/all/Johnson-Johnson-Announces-Formation-of-Ebola-Vaccine-

Development-Consortia-Gains-Funding-from-Innovative-Medicines-Initiative). Around the same 

timeframe, NIAID developed its own MVA-EbolaZ (VRC-EBOMVA079-00-VP), which has 

been used in more recent ChAd3-EBOZ clinical trials. 

MVA-BN-Filo 

Bavarian Nordic’s MVA-BN-Filo vaccine encodes four filovirus proteins, EBOV GP1,2, SUDV 

GP1,2, Marburg virus (MARV) GP1,2, and Taï Forest virus (TAFV) nucleoprotein (NP). MVA-

BN-Filo has the potential, therefore, to induce immunity against multiple filoviruses. MVA-BN-

Filo significantly enhanced T-cell responses when administered as a boost after a ChAd3-EBOZ 

prime [54]. Additionally, inclusion of an MVA-BN-Filo boost resulted in a significant increase 

of anti-filovirus antibody titers, with a geometric mean-fold increase of 26. Interestingly, 

individuals receiving the MVA-BN-Filo boost did not consistently mount antibody responses to 

SUDV or MARV GP1,2 [54]. 
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Few data have been published for MVA-BN-Filo alone, as this vaccine was developed 

specifically in response to the 2013–2016 Western Africa EVD outbreak. Bavarian Nordic has 

actively pursued the inclusion of adjuvants, including double-stranded RNA, into their vaccine 

platform in the past, but it is unclear whether these efforts will extend to the filovirus products 

[75]. Current clinical trials are examining the possibility of including MVA-BN-Filo as a prime 

as well as a boost with the Ad26.ZEBOV partner vaccine (NCT02376400, NCT02325050). The 

combinatorial vaccine regimen is currently being evaluated in clinical trials at multiple sites in 

Africa, the US, and Europe. Janssen’s EBOVAC project will presumably be summarizing and 

releasing data as they become available. 

MVA-EbolaZ 

NIAID’s VRC has developed an MVA-based vaccine called MVA-EbolaZ (VRC-

EBOMVA079-00-VP). Preclinical data have not been published for this vaccine, but it has been 

paired with ChAd3-EBOZ in recent clinical trials. This MVA-based vaccine expresses only 

EBOV (Yambuku-Mayinga) GP1,2. Preclinical work by VRC researchers with an MVA vector 

expressing both EBOV and SUDV GP1,2 showed that the MVA vaccine alone elicited a poor 

antibody response in nonhuman primates [52]. However, administering the MVA vaccine as a 

boost after a ChAd3-EBOZ prime resulted in 100% survival and enhanced immune responses, 

laying the groundwork for subsequent clinical studies [52]. 

In the pipeline 

In an effort to develop a filovirus vaccine with an added public-health benefit—and potentially 

with more appeal to pharmaceutical companies—NIAID has developed a vectored Ebola virus 

GP1,2 vaccine based on rabies virus (Mononegavirales: Rhabdoviridae: Lyssavirus). This vaccine 
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has been developed as a replication-competent (BNSP333-GP), replication-deficient 

(BNSPdeltaG-GP), and chemically inactivated vaccine (INAC-BNSP333-GP) [76]. In a 

nonhuman primate study comparing the vaccines, animals received a single vaccination of the 

replication-competent or replication-deficient vaccines, or two doses of the inactivated vaccine. 

Animals mounted antibody responses to both rabies virus G and Ebola virus GP1,2. All of the 

animals vaccinated with the replication-competent vaccine survived EBOV exposure with this 

single vaccine dose, whereas the attenuated and inactivated vaccines provided partial protection 

[77]. Survival seemed to be associated with a stronger IgG1 (as opposed to IgG2) response and a 

higher avidity antibody response [77]. Ongoing efforts to improve efficacy include a codon-

optimized EBOV GP1,2 and an adjuvant with the inactivated vaccine [78]. 

DNA VACCINES 

DNA vaccines are inexpensive, safe, and easy to produce; however, the pitfall of the platform is 

that DNA vaccines are often poorly immunogenic by intramuscular administration. 

Electroporation is currently used to deliver many DNA candidate vaccines into the nucleus of the 

target cells, which is required for effective antigen production and therefore immunogenicity. 

When administered properly, DNA vaccines elicit strong T-cell responses and are potentially 

effective for protection from viral infections. Two research groups have EBOV DNA vaccines 

that currently are or have been in clinical trials: NIAID and Inovio.  

While the safety profile, cost effectiveness, and ease of production make DNA vaccines 

attractive candidates, the difficulty in vaccine administration is a serious hurdle to their licensure. 

It is impractical to deploy hundreds of electroporation instruments to remote areas in Africa, 

where instrument failure or poor maintenance could mean that the vaccine cannot be 
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administered. Nonetheless, the possibility that a more efficient delivery technology will be 

developed would make DNA vaccines more practical. Moreover, if vaccination of only a small 

number of people were required to perhaps ring-vaccinate to contain a new EVD outbreak, DNA 

vaccines offer an easily amenable platform that could be made variant-specific and administered 

effectively to a small number of at-risk individuals. 

NIAID-Sponsored DNA vaccines (VRC-EBODNA023-00-VP, VRCEBODNA012-00-VP, and 

VRCMARDNA025-00-VP) 

NIAID sponsored three clinical trials for their DNA candidate vaccines between 2003 and 2013. 

Two of these trials were Phase 1 trials in the US, whereas the third was conducted in Uganda. 

The vaccines in all studies were administered by Biojector, a needle-free injection system. 

The first trial tested an ebolavirus DNA vaccine (VRCEBODNA012-00-VP) that included three 

plasmids expressing EBOV GP1,2, SUDV GP1,2, and EBOV NP. The expressed GP1,2s lacked 

their transmembrane domains in an effort to increase release of the proteins from the expressing-

cell membrane after expression [79]. VRCEBODNA012-00-VP was administered as part of a 

prime-boost regimen with an early Ad5-based vaccine as the boost, also produced by NIAID. 

The impetus for these studies was a nonhuman primate study wherein three vaccinations with the 

DNA vaccine, followed by a single vaccination with the Ad5 vaccine, resulted in protection from 

EBOV infection [49]. After vaccination, all volunteers had seroconverted to at least one of the 

antigens [79]. 

A second generation DNA vaccine, VRC-EBODNA023-00-VP, included two plasmids 

expressing full-length EBOV and SUDV GP1,2, and it was tested in parallel with a DNA vaccine 

for Marburg virus disease, VRCMARDNA025-00-VP, which expressed full-length MARV GP1,2 
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[80]. After three vaccinations, only 56% of subjects had seroconverted to the Ebola virus GP1,2 

and 89% to the Sudan virus GP1,2, suggesting that the DNA vaccines had not been administered 

effectively [80]. The potential impact of a heterologous boost on immunogenicity was not 

evaluated. Because the safety data from the study were reassuring, these vaccines went on to be 

evaluated in a Phase 1b trial in Uganda. Volunteers received 4 mg of EBOV DNA vaccine, 

MARV DNA vaccine, or both (NCT00997607) using Biojector 2000. While the safety profile of 

the vaccine was acceptable, even after three vaccinations the immune response of volunteers was 

poor, and antibody titers had nearly returned to baseline levels by 44 weeks after vaccination 

[81]. 

Inovio-developed DNA Vaccines (INO-4201, INO-4202, and INO-4212) 

Inovio has developed three DNA vaccines: INO-4201 expresses EBOV GP1,2 from pre-2013 

EBOV variants, INO-4202 expresses EBOV Makona GP1,2, and INO-4212 is a one-to-one 

mixture of INO-4201 and INO-4202. In addition, Inovio is testing the impact of including a 

DNA vaccine encoding IL-12 (INO-9012), which may help enhance the immune response to 

vaccination. Administration of the vaccines will be intramuscular, but the injection will be 

followed by electroporation (NCT02464670) [82]. Data from these studies should become 

available in late 2016. 

SUBUNIT VACCINES 

It has long been known that ebolavirus GP1,2 is the required antigen for obtaining protective 

immunity [28,83,84]. All of the vaccines in clinical trials are using GP1,2 as their antigen, and 

measurement of GP1,2-specific immune responses will likely be the ultimate correlate of 

protection. Naturally, investigators have therefore looked at the potential utility of protein-based 
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and subunit vaccines. A GP1,2-based subunit vaccine would face the hurdles of immunogenicity 

and manufacturing. Protein-based vaccines lack “danger signals” and typically are poorly 

immunogenic in the absence of a vaccine adjuvant. In addition, GP1,2 is a notoriously difficult 

protein to produce and, due to its cytotoxicity, cell lines producing GP1,2 are also difficult to 

maintain. Despite these obstacles, one protein-based platform has advanced into Phase 1 clinical 

trials (NCT02370589). 

Ebola virus GP1,2 with Matrix-M adjuvant 

Novavax has produced an EBOV Makona GP1,2 nanoparticle vaccine that is adjuvanted with 

proprietary Matrix-M. Matrix-M, according to Novavax, is a phospholipid base with synthetic 

cholesterol and saponin. There are multiple vaccine adjuvants that are immune-stimulating 

complexes (ISCOMs) like Matrix-M, and this class of adjuvants is associated with eliciting 

strong humoral and cellular responses [85]. To produce the vaccine, Autographa californica 

multicapsid nucleopolyhedrovirus (AcMNPV; Baculoviridae: Alphabaculovirus) expressing the 

antigen of interest, in this case EBOV GP1,2, is used to infect Spodoptera frugiperda Sf9 insect 

cells. GP1,2 is then expressed on the surface of infected cells. The cells are lysed, and the GP1,2 is 

collected for formulation with the adjuvant. Primary publications on this product have not yet 

been released, but a similar approach has been used by Novavax for its human respiratory 

syncytial virus vaccine products [86]. Data from the ongoing Phase 1 trial should become 

available soon. 

In the pipeline 

The US Army Medical Research Institute of Infectious Disease (USAMRIID) developed a 

filovirion-like particle more than twenty years ago [84,87-92]. These virion- or (“virus”)-like 
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particles (VLPs) have alternately been produced in Sf9 cells via a baculovirus system, much like 

the Novavax product, or in human 293 cell lines. VLPs have been shown to be highly 

immunogenic and confer protection in the absence of adjuvants to rodents exposed to rodent-

adapted EBOV [93,94]. Inclusion of adjuvant, however, results in significant dose sparing and is 

required for achieving protection in nonhuman primates [95-99]. The VLP platform was 

anticipated to move forward to clinical trials, but manufacturing issues have hampered its 

progression. 

CONCLUSIONS 

In this review, we refrained from delving too deeply into immunogenicity data collected from the 

various past and ongoing vaccine trials due to the lack of standardized assays by which samples 

from different studies can be compared. Efforts are underway to standardize an enzyme-linked 

immunosorbent assay for antibody titer evaluation, as well as an assay to evaluate neutralizing 

antibody titers [100,101]. Vaccine development would benefit considerably from agreement by 

the various sponsors to have an independent organization run comparative immunological assays 

with their study samples. 

For deployment to regions affected by filovirus infection, cold-chain requirements should be 

considered. These requirements are difficult to adhere to in parts of Africa, where supply of 

electricity and therefore refrigeration is not reliable. Vaccines that are effective after 

lyophilization or storage at room temperature may provide a competitive benefit over those that 

require colder storage temperatures. While pre-existing immunity to the Ad5 vector may affect 

the efficacy of the vaccine, use of Ad5-EBOV in a lyophilized format is at least suggestive that 

adenovirus-based vaccines can be efficacious after lyophilization [64]. Other vaccines discussed 
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here are undergoing stability studies or have been demonstrated to be stable at refrigeration 

conditions. 

Ebola virus and other filoviruses cause severe disease with a rapid onset. The development of a 

vaccine rapidly inducing immunity via a single vaccination would be ideal. The requirement of 

heterologous boosts for the adenovirus-based vaccines is a drawback in terms of production but 

also in terms of practical administration. While a single vaccination would be ideal, even a 

homologous boost would be preferable to a heterologous boost. In this area, VSIV-based 

vaccines are promising. 

A third point to consider in developing an EVD vaccine for an African population is that the 

microbiome, nutritional status, and pre-existing immunity of vaccinees are quite distinct from 

those of the European or American populations. These differences between the developed world 

and the developing world may impact vaccine efficacy. Thus, while an orally administered 

vaccine would seem to be ideal for its ease of administration and lack of cold-chain 

requirements, there is evidence that oral vaccines fail in populations with disturbed microbiota, 

poor nutrition, and high intestinal inflammation [102-104]. Additionally, developers of vectored 

vaccines should consider the pre-existing immunity of the target population, which may differ 

from that of the country in which the product is developed. 

Finally, the vast majority of EVD vaccines currently evaluated in clinical trials are administered 

intramuscularly; the single exception is HPIV3-EbovZ GP. Little research has been performed to 

ascertain whether intramuscular vaccine administration of a vaccine will protect against mucosal 

exposure, which is the most likely route of exposure to a filovirus during a natural disease 

outbreak. rVSV-ZEBOV administration in nonhuman primates via intranasal and oral 
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administration has been compared to intramuscular administration [105]. Animals survived 

intramuscular exposure to EBOV regardless of vaccination route, and intranasal administration 

elicited higher peripheral IgA and IgG titers compared to that observed with intramuscular 

administration. Unfortunately, IgA titers in mucosal tissues were not evaluated, nor was 

protection from mucosal infection. An earlier nonhuman primate study using VSIV-vectored 

Marburg virus or EBOV GP1,2, however, demonstrated vaccine efficacy against aerosol exposure 

to homologous virus [106]. Nonhuman primate studies using adenovirus-vectored filovirus 

vaccines have also demonstrated protection against aerosolized agent, but data on aerosol 

exposure with the current clinical candidates are not yet available [107]. 

EXPERT COMMENTARY 

The variety of EBOV vaccines currently in clinical trials is astounding considering the state of 

EBOV vaccine research only 5 or even only 3 years ago. The candidate vaccines currently in the 

clinic are based on multiple platforms and have varying benefits and pitfalls. From the current 

candidate vaccines, more than one candidate will likely have an acceptable safety record 

allowing advance to product licensure. Certainly there are benefits to advancing more than one 

candidate, as different vaccines may be more valuable in some settings than in others. Vaccines 

for an emerging outbreak should be fast acting and easily disseminated to remote regions. In 

contrast, multiple vaccine boosts might be acceptable for healthcare workers or military 

personnel if the vaccine is administered well in advance of deployment to an outbreak region. 

From a biodefense standpoint, protecting a target population from aerosolized EBOV is 

desirable. A specialized vaccine for enhanced mucosal immune protection may be preferable for 

at-risk personnel. 
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For a re-emerging pathogen like EBOV, researchers have a unique opportunity to develop the 

best possible vaccine. If history is any indication, several years will pass before the next major 

EVD outbreak occurs. During that time, researchers could harness the knowledge gained from 

the current clinical candidates and, in collaboration with the institutes and agencies that 

developed them, work to develop an optimized vaccine candidate. Potentially, the next filovirus 

disease outbreak may not be due EBOV, but could be due to another known or unknown 

filovirus that will require the rapid production of a new vaccine. To that end, optimization of the 

vaccine platform for rapid modification of the expressed antigen would be a valuable research 

aim for investigators. 

While one hopes that the next filovirus disease outbreak is years away, we could conceivably see 

an increase in the incidence of filovirus disease. As urban communities continue to expand and 

villages grow, we are increasingly encroaching on the territory of animals and other organisms 

that could harbor human pathogens. Naturally, our risk of exposure will increase. For the vaccine 

field in general, the impetus should be on developing vaccine platforms that can be rapidly 

modified to counter emerging threats. 

FIVE-YEAR VIEW 

The advancement of EBOV vaccines accelerated considerably during the recent Western Africa 

EVD outbreak, and clinical trials focused on safety and immunogenicity continue in Africa and 

the Western World. Several of these candidates will likely have an acceptable safety profile. 

Concurrently, efforts will proceed for improving these vaccines. These efforts may include 

increasing the attenuation and therefore safety of the VSIV vector; improving the 

immunogenicity of the MVA and adenovirus vectors, and subunit or protein based vaccines 
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through adjuvants and novel delivery systems; and developing a less complicated device for 

DNA vaccine administration. Critically, testing of cold-chain requirements and the ability to 

lyophilize vaccine products will continue, and investigators will examine the ability of their 

vaccines to elicit mucosal immunity, regardless of vaccination route. The licensure of a vaccine 

will require either that animal data are accepted in place of human efficacy data or that clinical 

studies will be initiated during another filovirus disease outbreak. To enable this latter aim, 

clinical sites should be developed in Africa, which can be utilized for Phase 1 trials in the 

absence of an outbreak and for Phase 3 trials in the event of an outbreak. Relations between 

Western and African researchers and institutes may have been strengthened through 

collaborations during the recent Western African EVD outbreak, increasing the global sharing of 

information. Such relationships could potentially advance the scientific, clinical, and research 

capabilities of African countries. In addition, these relationships may contribute toward the 

Western World’s understanding of endemic emerging infectious diseases, in which African 

researchers often have expertise. 

KEY ISSUES 

• Multiple vaccines targeting Ebola virus are currently in clinical trials 

• Vectored vaccines, including vaccines in adenovirus, vesicular stomatitis Indiana virus, 

and poxvirus vectors, are the most advanced in clinical trials 

• Ebola virus-specific vaccines vary in their safety and immunogenicity profiles 

• Vaccines to prevent Ebola virus disease should be developed with consideration for the 

region in which the pathogen is emerging 
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• Vaccines that are efficacious after a single vaccination, have a strong safety profile, do 

not require cold-chain storage, and induce mucosal immunity may be ideal for protection 

against filovirus infection and/or disease 

• The rVSV-ZEBOV vaccine is the only vaccine for which human efficacy data exist 
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Table 1: Overview of Ebola virus disease candidate vaccines in the clinic. 

Vaccine Class Vaccine Name Manufacturer or 
sponsor 

Most Advanced 
Clinical Trial 

Status 
Pros Cons Comments 

Vectored, 
Live 

rVSV-ZEBOV 
Merck Sharp & Dohme 
Corp, NewLink Genetics, 
Public Health Agency of 
Canada 

Phase 3 Single vaccination is 
highly immunogenic 

Some safety 
concerns  

HPIV3-EbovZ GP 
 NIAID Phase 1 

Intranasal 
administration may 
elicit more robust 
mucosal immunity 

Pre-existing 
immunity to 
vector 

 

Vectored, 
non-
replicating 

ChAd3.EBOZ / 
ChAd3.EBO Glaxo Smith Kline, NIAID Phase 2 Safety Requires boost 

vaccination  

Ad26.ZEBOV Crucell Holland BV 
(Johnson & Johnson) Phase 3 Safety Requires boost 

vaccination 

Phase 4 retrospective 
evaluation underway 
though product is not 
licensed 
(NCT02661464) 

Ad5-EBOV 
Jiangsu Province CDC and 
prevention, Beijing Institute 
of Biotechnology, and Tiajin 
CanSino Biotechnology 

Phase 2 
Pre-existing 
immunity to Ad5 
vector 

Requires boost 
vaccination  

VRC-
EBOADV018-00-
VP 

NIAID Phase 1 
Pre-existing 
immunity to Ad5 
vector 

Requires boost 
vaccination No longer active 

MVA-BN-Filo 
Bavarian Nordic GmbH / 
Crucell Holland BV 
(Johnson & Johnson) 

Phase 3 Safety 

Immunogenicity; 
Requires 
heterotypic pairing 
for vaccine 
administration 

Phase 4 retrospective 
evaluation underway 
though product is not 
licensed 
(NCT02661464) 

MVA-EbolaZ 
(VRC-
EBOMVA079-00-
VP) 

NIAID Phase 1 Safety 

Immunogenicity; 
Requires 
heterotypic pairing 
for vaccine 
administration 

 

DNA 
VRC-
EBODNA023-00-
VP, 

NIAID Phase 1 Safety, flexible 
platform, low cost 

Effective 
administration 
requires 
electroporation 

No longer active 
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VRCEBODNA012-
00-VP, and 
VRCMARDNA025-
00-VP 
 

technology; 
requires boost 
vaccination for 
immunogenicity 

INO-4201, -4202, 
and -4212 

Inovio Pharmaceuticals, 
GeneOne Life Science Inc., 
DARPA 

Phase 1 Safety, flexible 
platform, low cost 

Effective 
administration 
requires 
electroporation 
technology; 
requires boost 
vaccination for 
immunogenicity 

 

Subunit / 
Protein 

EBOV GP1,2 with 
Matrix-M 

Novavax Phase 1 
Pending Phase 1 
results, “pro” may 
be safety 

Immunogenicity 
unclear at time of 
publication 
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